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Much of this note draws heavily on the standard analysis of the basic differential or long-
tailed pair. I find the analysis that utilizes the hyperbolic tangent to be particularly
succinct and elegant—the following is based around that to be found in [6], but I have
added some of the missing detail here. Suppose we have a pair of NPN transistors tied
at the emitter, so the common emitter voltage is VE , and from which point we draw
current I . The base voltages are V1 and V2, and the collector currents are I1 and I2,
which we also assume are the emitter currents (i.e. neglect the base currents):

With Is the saturation current as normal, and writing kT/q as VT for convenience, we
have

I1 ≈ Ise
V1−VE

VT and I2 ≈ Ise
V2−VE

VT .

Divide to get

I2

I1
=

e
V2−VE

VT

e
V1−VE

VT

= e
V2−V1

VT . (1)

†Comments, suggestions and corrections can be emailed to me at:
tim102@tstinchcombe.freeserve.co.uk.
A good place to seek answers to questions on the internals of synthesizers in general is
the ‘Synth DIY’ mailing list: http://www.euronet.nl/~rja/Emusic/Synth-diy/
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Substitute for I2 in
I = I1 + I2 = I1 + I1e

V2−V1
VT , (2)

giving

I1 =
I

1 + e
V2−V1

VT

.

Now the subtle bit: multiply top and bottom by 2, and ‘add zero’ into the numerator:

I1 =
I × 2

2
(

1 + e
V2−V1

VT

) =
I

2


1 + 1 + e

V2−V1
VT − e

V2−V1
VT

1 + e
V2−V1

VT


 =

I

2


1 +

1 − e
V2−V1

VT

1 + e
V2−V1

VT


 .

Now

tanh x =
ex − e−x

ex + e−x
=

e2x − 1
e2x + 1

,

from which it can be seen we get

I1 =
I

2

[
1− tanh

(
V2 − V1

2VT

)]
=

I

2

[
1 + tanh

(
V1 − V2

2VT

)]
. (3)

For I2 we have

I2 = I − I1 = I − I

2

[
1 + tanh

(
V1 − V2

2VT

)]
=

I

2

[
1 − tanh

(
V1 − V2

2VT

)]
,

and the symmetry between the currents is very obvious.

For the linear approximation when (V1 − V2)/2VT is small, the Taylor series expansion
of tanh x is x − x3

3 + · · · , so when the differential input voltage is small, say within
±20mV, we can aproximate as

I1,2 =
I

2

[
1 ± V1 − V2

2VT

]
, (4)

with ‘plus’ for I1, ‘minus’ for I2. (Note that with VT = 0.026V, the constant
1/(2VT) = 19.2, one that often crops up on OTA datasheets.)

Now from equations (1) and (2) it is clear that when the emitter voltages are not equal,
i.e. we have VE1 and VE2, if the currents sum to give I , we will get a more general
version of equation (3)

I1,2 =
I

2

[
1 ± tanh

(
V1 − V2 − VE1 + VE2

2VT

)]
, (5)

and also its linear approximation

I1,2 =
I

2

[
1 ± V1 − V2 − VE1 + VE2

2VT

]
. (6)
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Figure 1: Basic circuit of the Moog ladder filter

Working with the basic filter set-up shown in Figure 1, as per Robert Moog’s origi-
nal patent [1], the filter consists of ‘driver transistors’ Q1 and Q2, to which the input
voltages V1 and V2 are applied, and current If , proportional to the cut-off frequency, is
drawn from the emitters; a pair of ‘output coupling transistors’ , Q11 and Q12, from
which the output voltages Vo1 and Vo2 are taken; and in between, four filter stages, each
consisting of a pair of transistors and a capacitor.

Throughout, assume that the base currents are negligible, and thus that through each
transistor the emitter current equals the collector current.

Driver pair: let Vin = V1 − V2 be the input voltage, then with IC1 and IC2 the collector
currents, we have If = IC1 + IC2 and so from (4) we get

IC1 =
If

2

[
1 +

Vin

2VT

]
and IC2 =

If

2

[
1− Vin

2VT

]
,
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which on subtracting gives

IC1 − IC2 =
IfVin

2VT
. (7)

Output pair: let the output voltage be Vout = Vo1 − Vo2 = VE11 − VE12 ; with collector
currents IC11 and IC12 , and assuming for now that IC11 + IC12 = If , from (6) we get

IC11 =
If

2

[
1 +

−VE11 + VE12

2VT

]
=

If

2

[
1 − Vout

2VT

]
and IC12 =

If

2

[
1 +

Vout

2VT

]
,

and again subtraction gives

IC11 − IC12 = −
IfVout

2VT
. (8)

Filter stage transistor pair: work with Q3 and Q4, but the working applies equally to
the others. We now have capacitor C connected between the emitters: assume that
current I flows from VE3 to VE4 , i.e. that we have

VE3 − VE4 =
I

sC
.

As usual, with collector currents IC3 and IC4 , we have

IC3 = IC1 + I and IC4 + I = IC2 .

If we add these two we see that

IC3 + IC4 = IC1 + IC2 = If ,

which means that the sums of the collector currents all the way up the ladder equal If ,
and in particular, that this is so for the output pair, and so the assumption made above
is correct. Subtracting the equations gives

IC1 − IC2 = IC3 − IC4 − 2I = IC3 − IC4 − 2sC(VE3 − VE4).

Since IC3 + IC4 = If , we can again make use of (6) to get

IC3 =
If

2

[
1 +

VE4 − VE3

2VT

]
and IC4 =

If

2

[
1− VE4 − VE3

2VT

]
,

which on subtracting give

IC3 − IC4 =
If (VE4 − VE3)

2VT
,

from which we usefully get

VE4 − VE3 =
2VT(IC3 − IC4)

If
.

4



Rid this from the expression above to get

IC1 − IC2 = IC3 − IC4 + 2sC

(
2VT (IC3 − IC4)

If

)
,

from which it is a small step to get

IC3 − IC4

IC1 − IC2

=
1

1 + s
4VTC

If

.

This is the transfer function of a single stage. If we put Requiv = 4VT/If , we could write
this as

IC3 − IC4

IC1 − IC2

=
1

1 + sCRequiv
,

or better still as
IC3 − IC4

IC1 − IC2

=
1

1 + s/ωc
,

where
ωc =

1
CRequiv

=
If

4CVT
,

or
fc =

1
2πCRequiv

=
If

8πCVT
.

It is clear that when the 4 stages are cascaded, we will get

IC11 − IC12

IC1 − IC2

=
1

(1 + s/ωc)4
,

and using equations (8) and (7)

−IfVout

2VT

IfVin

2VT

=
1

(1 + s/ωc)4
,

which after cancelling, finally gives what we are looking for

Vout

Vin
=

−1
(1 + s/ωc)4

.

Apart from the negation, this agrees with that given in [5], which is just about the only
other detailed reference I know of on this filter. (The sign inversion is probably just due
to the order chosen for the difference between Vo1 and Vo2, and is likely to only be of
consequence if considering feeding the output back to the input for resonance purposes.)

For C = 10nF, VT = 26mV and If = 10µA, we get fc = 1530Hz, and at this frequency,
|Vout/Vin| = |1/(1 + j)4| = 1/

√
(1 + j)4(1− j)4 = 1/

√
(1 − j2)4 = 1/

√
(1 + 1)4 =

1/4 ≡ −12dB. The output from a simple simulation, with biasing resistors to keep the
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Figure 2: Frequency response - SIMetrix simulation versus Mathematica

transistors about 1V apart, is shown in Figure 2 - a multi-step run with If from 1µA to
100µA, 3 steps per decade. The middle trace is at If = 10µA, showing about −13dB
at 1500Hz. Also on the graph are 3 traces from data generated in Mathematica using
the above equations, at values of If = 1µ, 10µ and 100µA - they show good agreement
with the simulated data, confirming the validity of the above analysis!

It should also be possible to analyse the circuit using an appropriate small-signal model,
which would probably show better how use is made of the (variable) base-emitter re-
sistance. However in using such a model I doubt it would be quite as clear how the
non-linearities have been ‘overlooked’ in deriving the transfer function, and presumably
it is these same non-linearities which contribute to the distinctive sound of the filter.
However, I shall update this note with any more details as and when they arise!

July 5, 2005 postscript. Since writing the above in February 2004, another interesting
paper on the Moog Ladder Filter has appeared, [4]. I have had little exposure to digital
filters, but have seen the opinion expressed in several places that digital implementations
of the ladder filter tend not to mirror its fabled quality, and so have wondered if it is
possible somehow to ‘replace’ the non-linearities lost in making the linear approximation
to tanh in the derivation of equations (4) and (6) above, and thus whether this would
add to the sound quality of any such implementation. Without having studied much
of the detail in the paper, it looks as though [4] may have come up with a method for
doing this!
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